Computations of some cyclotomic units in $Z[\zeta]$

Martin Rupp

SCIENTIFIC AND COMPUTER DEVELOPMENT SCD LTD 18/June/2023

Contents

1	case $k = 1$	2
	1.1 $p = 3 \dots \dots$	2
	$1.2 p = 5 \dots \dots$	3
	$1.3 p > 5 \dots \dots$	3
2	case $k = 2$	3
	2.1 $p \equiv 1 \pmod{3}$	3
	$2.2 p = 5 \dots \dots$	4
	2.3 $p \equiv -1 \pmod{3}$	4
3	computation of S^{-1} for some special values of k and p	4
3	computation of S^{-1} for some special values of k and p 3.1 $p \equiv \pm 1 \pmod{k+1}$	4 4
3		_
3	3.1 $p \equiv \pm 1 \pmod{k+1}$	4
	3.1 $p \equiv \pm 1 \pmod{k+1}$ 3.2 $k = 4$ and $p = 13$	$\frac{4}{5}$
4	3.1 $p \equiv \pm 1 \pmod{k+1}$ 3.2 $k = 4$ and $p = 13$ use of patterns	4 5 8

Abstract

We present some elementary computations involved with the inverse of the cyclotomic units $S(p,k) = 1 + \zeta + \zeta^2 + \ldots + \zeta^k$ in $\mathbb{Z}[\zeta]$ where ζ is a $p^t h$ -root of unity ζ_p ($\zeta^p = 1$), p a prime and k . The goal is to 'play a little' with some of the cyclotomic units.

1 case k = 1

We start with $S = S(\zeta, 1) = \frac{1}{1+\zeta}$. If S has an inverse in $\mathbb{Z}[\zeta]$, it must be :

$$S^{-1} = \sum_{i=1\dots p-2} a_i \zeta^i, a_i \in \mathbb{Z}$$

Note: We have

$$1 + \zeta + \dots \zeta^{p-1} = 0$$

We can try to solve that equation for simple values of p. For example we try p = 3.

1.1 p = 3

We must have :

$$1 = (1 + \zeta)(a_0 + a_1\zeta)$$

This leads to:

$$1 = a_0 + (a_1 + a_0)\zeta + a_1\zeta^2$$

or

$$0 = a_0 - 1 - a_1 + a_0 \zeta$$

since $1 + \zeta + \zeta^2 = 0$. We get $a_0 = 0$ and $a_1 = -1$. So that:

$$\frac{1}{1+\zeta} = -\zeta$$

Which is indeed straightforward to check since this leads to

$$1 = -(1 + \zeta)(\zeta) = -\zeta - \zeta^{2}$$

Now we try with p = 5.

1.2p=5

We use the same technique and we get:

$$1 = (1 + \zeta)(a_0 + a_1\zeta + a_2\zeta^2 + a_3\zeta^3)$$

This leads to:

$$0 = a_0 - 1 - a_3 + (a_0 + a_1 - a_3)\zeta + (a_1 + a_2 - a_3)\zeta^2 + a_2\zeta^3$$

Which resolves as $a_0 = 0, a_1 = -1, a_2 = 0, a_3 = -1$ Then:

$$\frac{1}{1+\zeta} = -\zeta - \zeta^3$$

We can verify that computation by checking that, indeed:

$$1 = (1 + \zeta)(-\zeta - \zeta^3) = -\zeta - \zeta^2 - \zeta^3 - \zeta^4$$

1.3p > 5

We can identify a general pattern which consists in using the identity 1 = $-\zeta - \zeta^2 \dots - \zeta^{p-1} = (1+\zeta)(-\zeta - \zeta^3 \dots - \zeta^{p-2})$ so that, in general:

$$\frac{1}{1+\zeta} = -\zeta - \zeta^3 \dots - \zeta^{p-2}$$

We can also have tried to determine directly the coefficients $a_0 \ldots a_{p-2}$ by solving the equations:

$$a_0 - a_{p-2} - 1 = 0;$$

 $a_{p-3} = 0;$
 $a_{i-1} + a_i - a_{i-2} = 0; (i = 2 \dots p - 3).$

$\mathbf{2}$ case k = 2

 $\mathbf{2.1}$ $p \equiv 1 \pmod{3}$

We now try to compute $S^{-1} = \frac{1}{1+\zeta+\zeta^2}$. We could try to consider - again - the sum $-\zeta - \zeta^4 \dots - \zeta^{3i+1} \dots$ as a possible candidate for S^{-1} . This will work *only* if $p \equiv 1 \pmod{3}$.

In the case where $p \equiv -1 \pmod{3}$, we have to find an other method.

Again we try small values of p (but such that $p \equiv 1 \pmod{3}$) in order to find a hint.

2.2 p = 5

In that case, we have to solve the equation:

$$1 = (1 + \zeta + \zeta^2)(a_0 + a_1\zeta + a_2\zeta^2 + a_3\zeta^3)$$

(a_0, a_1, a_2, a_3) $\in \mathbb{Z}$.

This leads to:

$$1 = a_0 - a_2 + (a_1 + a_0 - a_2 - a_3)\zeta + (a_1 + a_0 - a_3)\zeta^2 + a_1\zeta^3$$

which has a solution as: $a_0 = a_3 = 1$; $a_1 = a_2 = 0$. Then we get finally:

$$\frac{1}{1+\zeta+\zeta^2}=1+\zeta^3$$

Which is also straightforward to verify since this is equivalent to:

$$1 = (1 + \zeta + \zeta^2)(1 + \zeta^3) = 1 + \zeta + \zeta^2 + \zeta^3 + \zeta^4 + \zeta^5$$

 $2.3 \quad p \equiv -1 (\mod 3)$

Once again, we identify a pattern, which involves the identify

$$1 + \zeta + \zeta^{2} + \dots \zeta^{p} = (1 + \zeta + \zeta^{2})(1 + \zeta^{3} + \zeta^{6} + \dots \zeta^{3i} + \dots \zeta^{p-2})$$

(which is possible since $p \equiv -1 \pmod{3}$)

3 computation of S^{-1} for some special values of k and p

3.1 $p \equiv \pm 1 \pmod{k+1}$

The two methods developed before will work in the general case when k and p are linked by the relation:

$$p \equiv \pm 1 \pmod{k+1}$$
- if $p \equiv 1 \pmod{k+1}$ then for $p = u(k+1) + 1$:

$$\frac{1}{1+\zeta+\ldots\zeta^{k}} = -\zeta - \zeta^{k+2} - \zeta^{2(k+1)+1} \dots - \zeta^{(u-1)(k+1)+1}$$

- if $p \equiv -1 \pmod{k+1}$ then for $p = u(k+1) - 1$:
$$\frac{1}{1+\zeta+\ldots\zeta^{k}} = 1 + \zeta^{k+1} + \zeta^{2(k+1)} \dots + \zeta^{(u-1)(k+1)}$$

Besides these cases where p and k are linked by a special relationship, there does not seems to have a way to compute S^{-1} so we try again a direct computation in the case of k = 4 and p = 13, since in that precise case $13 \equiv 3 \pmod{5}$ what doesn't fits in the previous schemes.

3.2 k = 4 and p = 13

We must solve

$$1 = (1 + \zeta + \zeta^2 + \zeta^3 + \zeta^4)(a_0 + a_1\zeta + a_2\zeta^2 + a_3\zeta^3 + a_4\zeta^4 + a_5\zeta^5 + a_6\zeta^6 + a_7\zeta^7 + a_8\zeta^8 + a_9\zeta^9 + a_{10}\zeta^{10} + a_{11}\zeta^{11})$$

we then need to distribute the 5 powers of ζ to the left part of the equation. This will involves 60 computations so we stream these computations inside the following table.

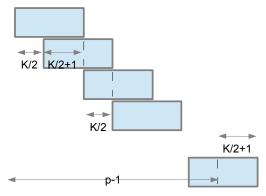
We display a table where we fill in the cell (i, j), the value of a_j 's for the $i^t h$ power of ζ (e.g : $\zeta^0 \dots \zeta^k$).

ζ^{11}	a_{11}	a_{10}	a_{11}	a_9+	a_{10}	a_8+	a_9	a_7+	a_8	a_7	$a_1 1$				
ζ^{10}	a_{10}	$a_{9} -$	a_{11}	$a_{8} -$	a_{10}	$a_7 -$	a_9	$a_{6} -$	a_8	$a_6 +$	$a_7 -$	$a_9 -$	$a_{10} - $	a_{11}	
ζa	a_9	$a_8 - a_{11}$		$a_7 - a_{10}$		$a_6 - a_9$		$a_5 - a_8$		$a_5 +$	$a_6 +$	$a_7 -$	$a_{9} - a_{10} - a_$	$a_{10} -$	a_{11}
ζ^8	a_8	$a_7 - a_{11}$		$a_6 - a_{10}$		$a_5 - a_9$		$a_4 - a_8$		$a_4 + a_5 $	$a_6 + a_7 -$	$a_8 - a_9 - $	$a_{10} - a_{11}$		
ζ ⁷	a_7	$a_6 - a_{11}$		$a_5 - a_{10}$		$a_4 - a_9$		$a_{3} - a_{8}$		$a_3 + a_4 +$	$a_5 + a_6 -$	$a_8 - a_9 - $	$a_{10} - a_{11}$		
ζ ₆	a_6	$a_5 - a_{11}$		$a_4 - a_{10}$		$a_3 - a_9$		$a_2 - a_8$		$a_2 + a_3 $	$a_4 + a_5 -$	$a_8 - a_9 - $	$a_{10} - a_{11}$		
ζ^5	a_5	$a_4 - a_{11}$		$a_3 - a_{10}$		$a_2 - a_9$		$a_1 - a_8$		$a_1 + a_2 + $	$a_3 + a_4 -$	$a_8 - a_9 - $	$a_{10} - a_{11}$		
ζ ⁴	a_4	$a_3 - a_{11}$		$a_2 - a_{10}$		$a_1 - a_9$		$a_0 - a_8$		$a_0 + a_1 + $	$a_2 + a_3 + $	$a_4 - a_8 - $	$a_9 - a_{10} - $	a_{11}	
ζ^3	a_3	$a_2 - a_{11}$		$a_1 - a_{10}$		$a_0 - a_9$		$-a_8$		$a_0 + a_1 + $	$a_2 + a_3 -$	$a_8 - a_9 - $	$a_{10} - a_{11}$		
ζ^2	a_2	$a_1 -$	a_{11}	$a_0 - a_0$	a_{10}	$-a_9$		$a_{11} - $	a_8	$a_0 +$	$a_1 + $	$a_2 -$	$a_{8} -$	$a_{9} - a_{1}$	a_{10}
1 Ç	$a_0 \mid a_1 \mid$	$-a_{11}a_0 -$	a_{11}	a_{11} – a_{10}	a_{10}	$a_{10} - a_{11} -$	$a_9 a_9$	$a_9 + a_{10} -$	a_8 a_8	$a_0 + a_0 $	$a_8 a_1 -$	a_8-	a_9		

We solve that system of equations very easily and we find that the only non-null terms are:

$$a_0 = a_4 = a_8 = -1$$

hence :


$$\frac{1}{1+\zeta+\zeta^2+\zeta^3+\zeta^4} = -\zeta - \zeta^3 - \zeta^6 - \zeta^8 - \zeta^{11}$$

We see that - again - there is a pattern which seems to be close to the previous patterns we saw but this is slightly different :

We indeed can identify a pattern where the sum $1 = 2(-\zeta - \zeta^2 \dots - \zeta^{p-1}) - 1$ is been created by juxtaposing '5-length' blocks with common intersections. The end of a block *i* is the start of the block i+2. And the end of the blocks must insert with the beginning of the blocks by removing one last element...

That will work only for a special value of the 'shift' between the block i and the block i + 1.

4 use of patterns

We aim at reproducing the same pattern by shifting a block of k + 1(consecutive) 'bricks' (one such 'brick' being a $-\zeta^i$ for some integer i) by a length of l. At the end of the process we must have obtain a piece of block of length k + 1 - l and this means there must be an *odd* amount of blocks. Besides this is clearly possible to connect the last 'protuberant' piece of the blocks (minus one 'brick') to the start of the chain only if k + 1 - l = l + 1Besides, the process of forming blocks ends when the "horizontal distance" between the start of the first block and the end of the penultimate block is p - 1.

we must have then k = 2l what means that k must be even.

That leads to N(k+1) + k/2 = p - 1 or $p \equiv (k/2) + 1 \pmod{k+1}$

Note that this is still a progress because this is a more general case since in the case k = 2, this leads to $p \equiv -1 \pmod{3}$ and we find the previous result.

Indeed for the case when k = 2 (and only for that case), the last coefficient in the factoring term is in ζ^{p-1} what means we have to turn the coefficients that are 0 into coefficients that are +1 and the coefficients that are -1 into coefficients that are 0.

For example when we take k = 2 and p = 5 like we did previously $(5 \equiv 2/2 + 1 \pmod{(2+1)})$, we get:

We get $-\zeta - \zeta^2 - \zeta^4 = 1 + \zeta^3$. If k = 4, we can invert $1 + \zeta + \zeta^2 + \zeta^3$ that way for all p such that $p \equiv 3$ (mod 5), and so on ...

General case 5

In order to compute the inverse of $1 + \zeta + \ldots \zeta^k$ we could consider the following 'technique' (see [Washington], Lemma 1.3):

$$1 + \zeta + \dots \zeta^{k} = \frac{1 - \zeta^{k+1}}{1 - \zeta} \in \mathbb{Z}$$

Then we must have:

$$\frac{1}{1+\zeta+\ldots\zeta^k} = \frac{1-\zeta}{1-\zeta^{k+1}}$$

We can find $s \in \mathbb{Z}$ such that: $1 = s(k+1) \pmod{p}$.

Indeed following Bezout's theorem , since k+1 and p are primes between each others, there exists (s, t) in \mathbb{Z} such that s(k+1) + tp = 1.

Then we can write:

$$\frac{1-\zeta}{1-\zeta^{k+1}} = \frac{1-\zeta^{s(k+1)}}{1-\zeta^{k+1}}$$

In the case where s > 0, this leads to:

$$1 + \zeta^{k+1} + \zeta^{2(k+1)} + \ldots + \zeta^{(k+1)(s-1)}$$

In the case where s < 0, this leads to:

$$-\zeta^{(k+1)s}(1+\zeta^{-(k+1)}+\zeta^{-2(k+1)}+\ldots+\zeta^{(k+1)(-s-1)})$$

or, equivalently:

$$-\zeta^{(k+1)s} - \zeta^{(k+1)(s-1)} - \zeta^{(k+1)(s-2)} + \dots - \zeta^{-(k+1)s}$$

It has to be noticed that all coefficients in the sums are unique since $is \equiv js \pmod{p}$ implies that i = j otherwise we would have that s|p. This infers that the coordinates of the inverse are only -1, +1 or 0.

So the process here is twofold:

1) Compute s using the extended Euclidean algorithm.

2) Compute the residues of i(k+1) modulo p for $i = 1 \dots s - 1$ if s > 0 and for $i = s \dots - 1$ if s < 0.

So far that doesn't give a generic , 'global' formula because it depends on a series of algorithmic computations, same as the way we computed the "coordinates" $a_i \ i = 0, 1, \dots, p-2$.

For example, we consider again, p = 13 and k = 4. We have $-5 \times (k + 1) + 2 \times p = 1$ so:

$$\frac{1}{1+\zeta+\zeta^2+\zeta^3+\zeta^4} = -\zeta^{-25}(1+\zeta^5+\zeta^{10}+\zeta^{15}+\zeta^{20}).$$

This leads to:

$$-\zeta-\zeta^3-\zeta^6-\zeta^8-\zeta^{11}$$

and we find the result that we knew already.

The computation of s from k and p has logarithmic time complexity. We then compute several values here of the coefficients of the inverse.

$$p=11 1/S(1,11)=-\zeta -\zeta^{3} -\zeta^{5} -\zeta^{7} -\zeta^{9} (s = -5) 1/S(2,11)=1 +\zeta^{3} +\zeta^{6} +\zeta^{9} (s = 4) 1/S(3,11)=1 +\zeta^{4} +\zeta^{8} (s = 3) 1/S(4,11)=-\zeta -\zeta^{6} (s = -2) 1/S(5,11)=1 +\zeta^{6} (s = 2) 1/S(6,11)=-\zeta -\zeta^{4} -\zeta^{8} (s = -3) 1/S(7,11)=-\zeta -\zeta^{3} -\zeta^{6} -\zeta^{9} (s = -4) 1/S(8,11)=1 +\zeta^{3} +\zeta^{5} +\zeta^{7} +\zeta^{9} (s = 5) 1/S(9,11)=-\zeta (s = -1) p=13 1/S(1,13)=-\zeta -\zeta^{3} -\zeta^{5} -\zeta^{7} -\zeta^{9} -\zeta^{11} (s = -6) 1/S(2,13)=-\zeta -\zeta^{4} -\zeta^{7} -\zeta^{10} (s = -4) 1/S(3,13)=-\zeta -\zeta^{5} -\zeta^{9} (s = -3) 1/S(4,13)=-\zeta -\zeta^{7} (s = -2) 1/S(5,13)=-\zeta -\zeta^{7} (s = 2) 1/S(6,13)=1 +\zeta^{7} (s = 2) 1/S(7,13)=1 +\zeta^{3} +\zeta^{6} +\zeta^{8} +\zeta^{11} (s = 5) 1/S(8,13)=1 +\zeta^{5} +\zeta^{9} (s = 3) 1/S(9,13)=1 +\zeta^{4} +\zeta^{7} +\zeta^{10} (s = 4) 1/S(10,13)=1 +\zeta^{3} +\zeta^{5} +\zeta^{7} +\zeta^{9} +\zeta^{11} (s = 6)$$

$$\begin{split} 1/\mathrm{S}(11,13) = &-\zeta \ (s = -1) \\ \mathrm{p} = &17 \\ 1/\mathrm{S}(1,17) = &-\zeta \ -\zeta^3 \ -\zeta^5 \ -\zeta^7 \ -\zeta^9 \ -\zeta^{11} \ -\zeta^{13} \ -\zeta^{15} \ (s = -8) \\ 1/\mathrm{S}(2,17) = &1 \ +\zeta^3 \ +\zeta^6 \ +\zeta^9 \ +\zeta^{12} \ +\zeta^{15} \ (s = 6) \\ 1/\mathrm{S}(3,17) = &-\zeta \ -\zeta^5 \ -\zeta^9 \ -\zeta^{13} \ (s = -4) \\ 1/\mathrm{S}(3,17) = &1 \ +\zeta^3 \ +\zeta^5 \ +\zeta^8 \ +\zeta^{10} \ +\zeta^{13} \ +\zeta^{15} \ (s = 7) \\ 1/\mathrm{S}(4,17) = &1 \ +\zeta^6 \ +\zeta^{12} \ (s = 3) \\ 1/\mathrm{S}(5,17) = &1 \ +\zeta^6 \ +\zeta^{12} \ (s = 3) \\ 1/\mathrm{S}(6,17) = &1 \ +\zeta^6 \ +\zeta^7 \ +\zeta^{11} \ +\zeta^{14} \ (s = 5) \\ 1/\mathrm{S}(7,17) = &-\zeta \ -\zeta^9 \ (s = -2) \\ 1/\mathrm{S}(8,17) = &1 \ +\zeta^9 \ (s = 2) \\ 1/\mathrm{S}(8,17) = &1 \ +\zeta^9 \ (s = 2) \\ 1/\mathrm{S}(9,17) = &-\zeta \ -\zeta^6 \ -\zeta^{11} \ -\zeta^{14} \ (s = -5) \\ 1/\mathrm{S}(10,17) = &-\zeta \ -\zeta^6 \ -\zeta^{12} \ (s = -3) \\ 1/\mathrm{S}(10,17) = &-\zeta \ -\zeta^3 \ -\zeta^5 \ -\zeta^8 \ -\zeta^{10} \ -\zeta^{13} \ -\zeta^{15} \ (s = -7) \\ 1/\mathrm{S}(12,17) = &1 \ +\zeta^5 \ +\zeta^9 \ +\zeta^{13} \ (s = 4) \\ 1/\mathrm{S}(13,17) = &-\zeta \ -\zeta^3 \ -\zeta^6 \ -\zeta^9 \ -\zeta^{12} \ -\zeta^{15} \ (s = -6) \\ 1/\mathrm{S}(14,17) = &1 \ +\zeta^3 \ +\zeta^5 \ +\zeta^7 \ +\zeta^9 \ +\zeta^{11} \ +\zeta^{13} \ +\zeta^{15} \ (s = 8) \\ 1/\mathrm{S}(15,17) = &-\zeta \ (s = -1) \end{split}$$

As a matter of fact, from the observation of these values, we can identify a few more properties:

i)

$$1/S(p-2,p) = -\zeta$$

, this is obvious both from the identity $(1 + \zeta + \dots \zeta^{p-2})(-\zeta) = 1$ and from the fact that $-1 \times (p-1) + p = 1$. In that case, s = 1.

ii)

If we can divide p + 1 in equals parts of length k + 1, what means that $p \equiv -1 \pmod{k+1}$, then, since (k+1)|(p+1):

$$1/S(k,p) = 1 + \sum_{i=1}^{i=(p+1)/(k+1)-1} \zeta^{i(k+1)}$$

 $\begin{array}{c} (s = \frac{p+1}{k+1}) \\ \text{iii} \end{array}$

If we can divide p-1 in equals parts of length k+1, what means that $p \equiv -1 \pmod{k+1}$, then since (k+1)|(p-1):

$$1/S(k,p) = -\zeta + \sum_{i=1}^{i=(p-1)/(k+1)-1} -\zeta^{i(k+1)}$$

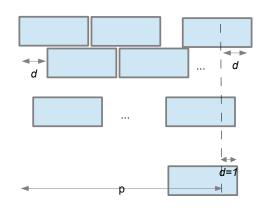
 $(s = \frac{p-1}{k+1})$

iv)

If we can use the pattern we described previously , then k is even and $p \equiv k/2 + 1 \pmod{(k+1)}$ (or equivalently $2p \equiv 1 \pmod{(k+1)}$).

$$1/S(k,p) = -\zeta + \sum_{i=1}^{i=(p-(k/2)-1)/(k+1)} -\zeta^{i(k+1)+(k/2)} - \zeta^{(i+1)(k+1)}$$

 $\left(s = \frac{2p-1}{k+1}\right)$


5.1 comment about the patterns

The patterns we identified are then trivially interpreted with the computation of the Bezout coefficients:

In the case s > 0, we consider the p powers of ζ from 0 to p - 1. This is a 'block' of length p. we then consider a sequence of blocks of length k + 1that are following each others. Each time that one block reaches the end of the p-block, it starts again, shifted. We stop when the shift value is equals at 1. This happens when we create a 'wall' made of n lines of $s \ k + 1$ -blocks such as the shift is '1', e.g. when s(k + 1) = np + 1. Then, since (the sum of the blocks from) one line has value =0, we get the value 1 by summing up all the blocks.

The case s < 0 is similar.

The 'patterns' are of course a trivial visualization of the sequence j(k+1), $j = 1 \dots s$ in $\mathbb{Z}/p\mathbb{Z}$.

6 conclusion

There are no general (non-algorithmic) ways to compute the inverse of $\sum_{i=0}^{i=k} \zeta^i$ in $\mathbb{Z}[\zeta]$. It is possible to identify certain generic patterns that will reach to immediate computation.

References

[Washington] Introduction to Cyclotomic Fields., Springer-Verlag 1982