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Abstract

We present some elementary computations involved with the inverse of the
cyclotomic units S(p, k) = 1 + ζ + ζ2 + . . .+ ζk in Z[ζ] where ζ is a pth-root
of unity ζp (ζp = 1), p a prime and k < p − 1. The goal is to ’play a little’
with some of the cyclotomic units.



1 case k = 1

We start with S = S(ζ, 1) = 1
1+ζ

. If S has an inverse in Z[ζ], it must be :

S−1 =
∑

i=1...p−2

aiζ
i, ai ∈ Z

Note: We have

1 + ζ + ...ζp−1 = 0

.

We can try to solve that equation for simple values of p. For example we
try p = 3.

1.1 p = 3

We must have :

1 = (1 + ζ)(a0 + a1ζ)

This leads to:

1 = a0 + (a1 + a0)ζ + a1ζ
2

or

0 = a0 − 1− a1 + a0ζ

since 1 + ζ + ζ2 = 0.

We get a0 = 0 and a1 = −1. So that:

1

1 + ζ
= −ζ

Which is indeed straightforward to check since this leads to

1 = −(1 + ζ)(ζ) = −ζ − ζ2

Now we try with p = 5.
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1.2 p = 5

We use the same technique and we get:

1 = (1 + ζ)(a0 + a1ζ + a2ζ
2 + a3ζ

3)

This leads to:

0 = a0 − 1− a3 + (a0 + a1 − a3)ζ + (a1 + a2 − a3)ζ2 + a2ζ
3

Which resolves as a0 = 0, a1 = −1, a2 = 0, a3 = −1
Then:

1

1 + ζ
= −ζ − ζ3

We can verify that computation by checking that, indeed:

1 = (1 + ζ)(−ζ − ζ3) = −ζ − ζ2 − ζ3 − ζ4

1.3 p > 5

We can identify a general pattern which consists in using the identity 1 =
−ζ − ζ2 . . .− ζp−1 = (1 + ζ)(−ζ − ζ3 . . .− ζp−2) so that, in general:

1

1 + ζ
= −ζ − ζ3 . . .− ζp−2

We can also have tried to determine directly the coefficients a0 . . . ap−2 by
solving the equations:

a0 − ap−2 − 1 = 0;

ap−3 = 0;

ai−1 + ai − ai−2 = 0; (i = 2 . . . p− 3).

2 case k = 2

2.1 p ≡ 1( mod 3)

We now try to compute S−1 = 1
1+ζ+ζ2

.

We could try to consider - again - the sum −ζ − ζ4 . . . − ζ3i+1 . . . as a
possible candidate for S−1. This will work only if p ≡ 1( mod 3).

In the case where p ≡ −1( mod 3) , we have to find an other method.
Again we try small values of p ( but such that p ≡ 1( mod 3) ) in order

to find a hint.
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2.2 p = 5

In that case, we have to solve the equation:

1 = (1 + ζ + ζ2)(a0 + a1ζ + a2ζ
2 + a3ζ

3)

(a0, a1, a2, a3) ∈ Z.

This leads to:

1 = a0 − a2 + (a1 + a0 − a2 − a3)ζ + (a1 + a0 − a3)ζ2 + a1ζ
3

which has a solution as: a0 = a3 = 1; a1 = a2 = 0.
Then we get finally:

1

1 + ζ + ζ2
= 1 + ζ3

Which is also straightforward to verify since this is equivalent to:

1 = (1 + ζ + ζ2)(1 + ζ3) = 1 + ζ + ζ2 + ζ3 + ζ4 + ζ5

2.3 p ≡ −1( mod 3)

Once again, we identify a pattern, which involves the identify

1 + ζ + ζ2 + . . . ζp = (1 + ζ + ζ2)(1 + ζ3 + ζ6 + . . . ζ3i + . . . ζp−2)

( which is possible since p ≡ −1( mod 3) )

3 computation of S−1 for some special values

of k and p

3.1 p ≡ ±1( mod k + 1)

The two methods developed before will work in the general case when kand
p are linked by the relation:

p ≡ ±1( mod k + 1)

- if p ≡ 1( mod k + 1) then for p = u(k + 1) + 1 :
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1

1 + ζ + . . . ζk
= −ζ − ζk+2 − ζ2(k+1)+1 . . .− ζ(u−1)(k+1)+1

- if p ≡ −1( mod k + 1) then for p = u(k + 1)− 1 :

1

1 + ζ + . . . ζk
= 1 + ζk+1 + ζ2(k+1) . . .+ ζ(u−1)(k+1)

Besides these cases where p and k are linked by a special relationship,
there does not seems to have a way to compute S−1 so we try again a direct
computation in the case of k = 4 and p = 13, since in that precise case
13 ≡ 3( mod 5) what doesn’t fits in the previous schemes.

3.2 k = 4 and p = 13

We must solve

1 = (1+ζ+ζ2+ζ3+ζ4)(a0+a1ζ+a2ζ
2+a3ζ

3+a4ζ
4+a5ζ

5+a6ζ
6+a7ζ

7+a8ζ
8+a9ζ

9+a10ζ
10+a11ζ

11)

we then need to distribute the 5 powers of ζ to the left part of the equation.
This will involves 60 computations so we stream these computations inside
the following table.

We display a table where we fill in the cell (i, j), the value of aj’s for the
ith power of ζ ( e.g : ζ0 . . . ζk).
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We solve that system of equations very easily and we find that the only
non-null terms are:

a0 = a4 = a8 = −1

hence :

1

1 + ζ + ζ2 + ζ3 + ζ4
= −ζ − ζ3 − ζ6 − ζ8 − ζ11

We see that - again - there is a pattern which seems to be close to the
previous patterns we saw but this is slightly different :

−− −− −− −− −−
−ζ −ζ2 −ζ3 −ζ4 −ζ5
−− −− −− −− −−

−− −− −− −− −−
−ζ3 −ζ4 −ζ5 −ζ6 −ζ7

−− −− −− −− −−
−− −− −− −− −−
−ζ6 −ζ7 −ζ8 −ζ9 −ζ10

−− −− −− −− −−
−− −− −− −− −−
−ζ8 −ζ9 −ζ10 −ζ11 −ζ12

−− −− −− −− −−
−− −− −− −− −−
−ζ11 −ζ12 −1 −ζ −ζ2

−− −− −− −− −−
We indeed can identify a pattern where the sum 1 = 2(−ζ−ζ2 . . .−ζp−1)−

1 is been created by juxtaposing ’5-length’ blocks with common intersections.
The end of a block i is the start of the block i+ 2. And the end of the blocks
must insert with the beginning of the blocks by removing one last element...

That will work only for a special value of the ’shift’ between the block i
and the block i+ 1.
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4 use of patterns

K/2

K/2

K/2+1

K/2+1

p-1

We aim at reproducing the same pattern by shifting a block of k + 1
(consecutive) ’bricks’ ( one such ’brick’ being a −ζ i for some integer i ) by a
length of l. At the end of the process we must have obtain a piece of block
of length k + 1 − l and this means there must be an odd amount of blocks.
Besides this is clearly possible to connect the last ’protuberant’ piece of the
blocks ( minus one ’brick’ ) to the start of the chain only if k + 1− l = l+ 1
Besides, the process of forming blocks ends when the ”horizontal distance”
between the start of the first block and the end of the penultimate block is
p− 1.

we must have then k = 2l what means that k must be even.

That leads to N(k + 1) + k/2 = p− 1 or p ≡ (k/2) + 1( mod k + 1)

Note that this is still a progress because this is a more general case since
in the case k = 2, this leads to p ≡ −1( mod 3) and we find the previous
result.

Indeed for the case when k = 2 ( and only for that case ), the last
coefficient in the factoring term is in ζp−1 what means we have to turn the
coefficients that are 0 into coefficients that are +1 and the coefficients that
are −1 into coefficients that are 0.

For example when we take k = 2 and p = 5 like we did previously
(5 ≡ 2/2 + 1( mod (2 + 1))) , we get:
−− −− −−
−ζ −ζ2 −ζ3
−− −− −−

−− −− −−
−ζ2 −ζ3 −ζ4
−− −− −−

−− −− −−
−ζ4 −1 −ζ
−− −− −−
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We get −ζ − ζ2 − ζ4 = 1 + ζ3.
If k = 4, we can invert 1 + ζ + ζ2 + ζ3 that way for all p such that p ≡ 3(

mod 5), and so on ...

5 General case

In order to compute the inverse of 1+ζ+. . . ζk we could consider the following
’technique’ ( see [Washington], Lemma 1.3):

1 + ζ + . . . ζk =
1− ζk+1

1− ζ
∈ Z

.
Then we must have:

1

1 + ζ + . . . ζk
=

1− ζ
1− ζk+1

.
We can find s ∈ Z such that: 1 = s(k + 1)( mod p).
Indeed following Bezout’s theorem , since k+ 1 and p are primes between

each others, there exists (s, t) in Z such that s(k + 1) + tp = 1.
Then we can write:

1− ζ
1− ζk+1

=
1− ζs(k+1)

1− ζk+1

In the case where s > 0, this leads to:

1 + ζk+1 + ζ2(k+1) + . . .+ ζ(k+1)(s−1)

.
In the case where s < 0, this leads to:

−ζ(k+1)s(1 + ζ−(k+1) + ζ−2(k+1) + . . .+ ζ(k+1)(−s−1))

.
or, equivalently:

−ζ(k+1)s − ζ(k+1)(s−1) − ζ(k+1)(s−2) + . . .− ζ−(k+1)

It has to be noticed that all coefficients in the sums are unique since
is ≡ js( mod p implies that i = j otherwise we would have that s|p. This
infers that the coordinates of the inverse are only −1,+1 or 0.

So the process here is twofold:
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1) Compute s using the extended Euclidean algorithm.
2) Compute the residues of i(k + 1) modulo p for i = 1 . . . s− 1 if s > 0

and for i = s . . .− 1 if s < 0.
So far that doesn’t give a generic , ’global’ formula because it depends

on a series of algorithmic computations, same as the way we computed the
”coordinates” ai i = 0, 1, . . . , p− 2.

For example, we consider again, p = 13 and k = 4. We have −5 × (k +
1) + 2× p = 1 so:

1

1 + ζ + ζ2 + ζ3 + ζ4
= −ζ−25(1 + ζ5 + ζ10 + ζ15 + ζ20).

This leads to:

−ζ − ζ3 − ζ6 − ζ8 − ζ11

.
and we find the result that we knew already.
The computation of s from k and p has logarithmic time complexity. We

then compute several values here of the coefficients of the inverse.

p=11
1/S(1,11)=-ζ -ζ3 -ζ5 -ζ7 -ζ9 (s = −5)
1/S(2,11)=1 +ζ3 +ζ6 +ζ9 (s = 4)
1/S(3,11)=1 +ζ4 +ζ8 (s = 3)
1/S(4,11)=-ζ -ζ6 (s = −2)
1/S(5,11)=1 +ζ6 (s = 2)
1/S(6,11)=-ζ -ζ4 -ζ8 (s = −3)
1/S(7,11)=-ζ -ζ3 -ζ6 -ζ9 (s = −4)
1/S(8,11)=1 +ζ3 +ζ5 +ζ7 +ζ9 (s = 5)
1/S(9,11)=-ζ (s = −1)
p=13
1/S(1,13)=-ζ -ζ3 -ζ5 -ζ7 -ζ9 -ζ11 (s = −6)
1/S(2,13)=-ζ -ζ4 -ζ7 -ζ10 (s = −4)
1/S(3,13)=-ζ -ζ5 -ζ9 (s = −3)
1/S(4,13)=-ζ -ζ3 -ζ6 -ζ8 -ζ11 (s = −5)
1/S(5,13)=-ζ -ζ7 (s = −2)
1/S(6,13)=1 +ζ7 (s = 2)
1/S(7,13)=1 +ζ3 +ζ6 +ζ8 +ζ11 (s = 5)
1/S(8,13)=1 +ζ5 +ζ9 (s = 3)
1/S(9,13)=1 +ζ4 +ζ7 +ζ10 (s = 4)
1/S(10,13)=1 +ζ3 +ζ5 +ζ7 +ζ9 +ζ11 (s = 6)
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1/S(11,13)=-ζ (s = −1)
p=17
1/S(1,17)=-ζ -ζ3 -ζ5 -ζ7 -ζ9 -ζ11 -ζ13 -ζ15 (s = −8)
1/S(2,17)=1 +ζ3 +ζ6 +ζ9 +ζ12 +ζ15 (s = 6)
1/S(3,17)=-ζ -ζ5 -ζ9 -ζ13 (s = −4)
1/S(4,17)=1 +ζ3 +ζ5 +ζ8 +ζ10 +ζ13 +ζ15 (s = 7)
1/S(5,17)=1 +ζ6 +ζ12 (s = 3)
1/S(6,17)=1 +ζ4 +ζ7 +ζ11 +ζ14 (s = 5)
1/S(7,17)=-ζ -ζ9 (s = −2)
1/S(8,17)=1 +ζ9 (s = 2)
1/S(9,17)=-ζ -ζ4 -ζ7 -ζ11 -ζ14 (s = −5)
1/S(10,17)=-ζ -ζ6 -ζ12 (s = −3)
1/S(11,17)=-ζ -ζ3 -ζ5 -ζ8 -ζ10 -ζ13 -ζ15 (s = −7)
1/S(12,17)=1 +ζ5 +ζ9 +ζ13 (s = 4)
1/S(13,17)=-ζ -ζ3 -ζ6 -ζ9 -ζ12 -ζ15 (s = −6)
1/S(14,17)=1 +ζ3 +ζ5 +ζ7 +ζ9 +ζ11 +ζ13 +ζ15 (s = 8)
1/S(15,17)=-ζ (s = −1)
As a matter of fact, from the observation of these values, we can identify

a few more properties:
i)

1/S(p− 2, p) = −ζ

, this is obvious both from the identity (1 + ζ + . . . ζp−2)(−ζ) = 1 and from
the fact that −1× (p− 1) + p = 1. In that case, s = 1.

ii)
If we can divide p + 1 in equals parts of length k + 1, what means that

p ≡ −1( mod k + 1) , then, since (k + 1)|(p+ 1) :

1/S(k, p) = 1 +

i=(p+1)/(k+1)−1∑
i=1

ζ i(k+1)

(s = p+1
k+1

)
iii)
If we can divide p − 1 in equals parts of length k + 1, what means that

p ≡ −1( mod k + 1), then since (k + 1)|(p− 1) :

1/S(k, p) = −ζ +

i=(p−1)/(k+1)−1∑
i=1

−ζ i(k+1)

(s = p−1
k+1

)
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iv)

If we can use the pattern we described previously , then k is even and
p ≡ k/2 + 1( mod (k + 1)) ( or equivalently 2p ≡ 1( mod (k + 1)) ).

1/S(k, p) = −ζ +

i=(p−(k/2)−1)/(k+1)∑
i=1

−ζ i(k+1)+(k/2) − ζ(i+1)(k+1)

(s = 2p−1
k+1

)

5.1 comment about the patterns

The patterns we identified are then trivially interpreted with the computation
of the Bezout coefficients:

In the case s > 0, we consider the p powers of ζ from 0 to p− 1. This is
a ’block’ of length p. we then consider a sequence of blocks of length k + 1
that are following each others. Each time that one block reaches the end of
the p-block, it starts again, shifted. We stop when the shift value is equals
at 1. This happens when we create a ’wall’ made of n lines of s k + 1-blocks
such as the shift is ’1’, e.g. when s(k + 1) = np + 1. Then, since ( the sum
of the blocks from ) one line has value =0, we get the value 1 by summing
up all the blocks.

The case s < 0 is similar.

The ’patterns’ are of course a trivial visualization of the sequence j(k+1),
j = 1 . . . s in Z/pZ.

d

p

d

d=1

...

...
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6 conclusion

There are no general ( non-algorithmic ) ways to compute the inverse of∑i=k
i=0 ζ

i in Z[ζ]. It is possible to identify certain generic patterns that will
reach to immediate computation.
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